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The Boltzmann’s entropy of a continuous Markov process, in local thermal equilibrium, in contact with a
reservoir at temperature 7, is analyzed. Assuming that the corresponding Fokker-Planck equation has constant
coefficients and satisfies detailed balance, an equation for the entropy density is derived, from which it is
possible to obtain expressions for the transport coefficients as functions of the diffusion matrix. Expressions for
the entropy production terms of the system and of the combination of system plus reservoir are obtained.
Known relations among transport coefficients are derived. The multicomponent case is also analyzed and the
Prigogine theorem of minimum entropy production is derived in the context of reaction diffusion systems. The
derivations presented in this paper are proposed as a framework for a deeper understanding of concepts used

in nonequilibrium diffusion systems.

DOI: 10.1103/PhysRevE.79.051123

I. INTRODUCTION

There is still controversy about the nature of irreversibil-
ity, and there is not a general accepted definition of entropy
for systems out of equilibrium. These problems are part of an
interesting debate that has lasted more than a century and is
not completely solved [1,2]. Following the ideas of Gold-
stein and Lebowitz [3-5], I will consider that the Boltz-
mann’s definition provides an appropriate entropy for the
systems under consideration, in particular when local ther-
mal equilibrium is assumed, and that a large number of de-
grees of freedom is an essential ingredient for irreversibility.
In this paper I will consider a stochastic system, in local
thermal equilibrium, whose evolution is described by a
Fokker-Planck equation, with coefficients independent of
time that satisfies detailed balance. The coefficients of a
Fokker-Planck equation must fulfill some relations in order
to have detailed balance ([6], Sec. 5.3.5). These conditions
guarantee detailed balance in equilibrium. Out of equilib-
rium, detailed balance is generally broken. The case of mul-
ticomponent systems, where reactions can take place, will
also be analyzed. The main purpose of the paper is to obtain
an entropy balance equation for these systems and analyze
the entropy production term.

There are not many statistical physical systems with a
known equation for the one-particle reduced distribution
function (RDF), from which irreversibility can be demon-
strated. Some of them are the Boltzmann equation for dilute
gases [7,8], Landau equation for weakly coupled systems [9],
and Balescu-Lenard equation for plasmas [10,11]. The sys-
tem treated in this paper is simpler since the particles are
noninteracting, and therefore, no collision term appears in
the equation for the RDF. Although collisions among system
particles are not taken into account, the particles do interact,
through collisions, with the host medium, and the effect of
these collisions is represented by the stochastic behavior. The
system, besides being in thermal contact with the reservoir, is
embedded in the reservoir, as, for example, ink (system) dif-
fusing in water (reservoir).
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In Sec. III, expressions for the entropy density of system,
reservoir, and combination of both are derived in a general
framework, in the sense that the results are independent of
the kind of evolution of the RDF or number density. A bal-
ance equation for the entropy density of a system described
by a Fokker-Planck equation is presented in Sec. IV. In the
entropy production term it is possible to identify transport
coefficients that satisfy the Onsager relations. Multicompo-
nent systems are analyzed in Sec. VIIL. It is assumed that,
since the solutions are dilute, they diffuse without interact-
ing, but they can react with probabilities that depend on the
densities. The result is an additional term in the entropy pro-
duction, through which it is possible to derive the Prigogine
theorem of minimum entropy production for general reaction
diffusion systems. The research in possible applications, and
limitations, of the minimum entropy production principle did
not decay during the last decades; I can mention a few ex-
amples of the recent papers on this subject, such as [12-18],
and references cited therein. The procedure described in Sec.
VII allows the evaluation of the entropy of far from equilib-
rium steady states (since the state is stationary, its entropy is
constant, but the entropy of the universe must continually
increase to sustain it). The Brusselator model is used as an
illustrative example.

II. EVOLUTION EQUATION OF THE NUMBER DENSITY

The system is formed by N particles, with N> 1. Each
particle obeys a d dimensional Markov process described by
the stochastic variable x;. In general, x; could represent po-
sition and momentum, i.e., a combination of even and odd
variables under time inversion. The available information
about a particle i is given by p;(x;,7): the conditional prob-
ability density of having the particle in x; at time ¢ given that
it was in x) at r=0. The evolution of p;(x;,?) is given by

ULV ) (n

at
where M is a linear operator that gives a Fokker-Planck
equation if the Markov process is continuous or a master
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equation if it is discontinuous (jump process).
The probability density in phase space of dimension Nd is

p(X,1) =[pi(x1,0)pr(X0,1) -~ py(Xp,1)
+p1(X2’t)p2(X1’t) B 'pN(XN’t) +
+p1(XNat)p2(XN—l’t) '”pN(Xht)]/N! > (2)

where X={x,X,,...,Xy}. TWo assumptions were used: non-
interacting and indistinguishable particles. The sum is over
the N! permutations of the particle labels; this makes the
probability density in phase space symmetric under inter-
change of particle labels.

The one-particle reduced distribution function is

N

f(X,l):Nf dxz'"dXNP(X»l)=2Pi(XJ), (3)

i=1

where x; was replaced by x. The evolution equation of the
RDF, or number density, is

Af(x,1)

N
= > M[p,(x,0)] = M[f(x,1)], 4)
i=1

where the linearity property of M was used. Therefore, the
same equation that describes the evolution of the probability
density of one particle also describes the evolution of the
number density f. The result is not surprising, nevertheless
its derivation is presented here in order to make clear the
different physical meaning of f(x,f) and p,(x,t). The quan-
tity that is related to entropy is f(x,?).

III. ENTROPY

The Boltzmann entropy is S=k In W, where W is the num-
ber of microscopic states consistent with a given macro-
scopic state. I will apply the definition to a small region in
phase space, of volume A, centered on x, and will use the
same kind of approximations used by Boltzmann for a dilute
gas that in our case corresponds to a dilute solution. The
number of particles in A, is Ny, and the number of states of
one particle in A, is M,. We assume that M,>N,>1. The
number of microscopic states W, is given by the number of
different ways in which it is possible to accommodate Ny
identical particles in M, sites:

(Ny+My—1)1 M

T M- INS N ©)

Using Stirling’s formula, the entropy in volume A is Sy
=N,-N, In(N,/M,) and, dividing by A, we obtain the fol-
lowing known relation:

s(x,t) =kf - kf In(f/c), (6)

where s(x,)=Sy/A, is the entropy density in the one-
particle phase space, c¢ is a factor to be determined, and f
=N,/ A,. Factor ¢ comes from a proportionality relation be-
tween number of states for one particle and volume in phase
space: My=cA,.

The interaction with a reservoir at temperature 7 is the
cause of the stochastic behavior of the system. The reservoir
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is big enough so that the interaction with the system does not
modify its state. Assuming that the total energy of reservoir
plus system is much greater than the energy of the system,
we can write the entropy of the reservoir as Sg=S,—E/T,
where S is a constant and E=[dxef is the energy of the
system, with e being the energy per particle that can be a
function of x. We can write Sp=S,— [dxef/T. The total en-
tropy of system plus reservoir is

Sp=Sro—k f dxf(In f+ e/kT), 7)

where Sy is another constant. Using Lagrange multipliers,
with the constraint [dxf=N, we obtain that the number den-
sity that maximizes St is

f.(x) =N exp(- e/kT)/z, (8)

where z=[dx exp(—e/kT).

Assuming that the state variable x represents position in
real space, the first law of thermodynamics can be written as
(see, e.g., [19], p. 537)

1 Moo f. e—p

ds = Tdu Tdf— Tde+ T df, 9)
where we have replaced the energy density u by ef, u is the
chemical potential, and local thermal equilibrium was as-
sumed. The local thermal equilibrium assumption allows us
to have well-defined local thermodynamic variables and also
allows us the replacement of an infinitesimal amount of heat
by T ds in the first law. The temperature of the system is
equal to the temperature of the reservoir since, as mentioned
in the introduction, the system is assumed to be embedded
in the reservoir. From Egs. (6) and (9) we have Z_;Lz
=(e—u)/T=—k In(f/c). The previous expression can be
evaluated at equilibrium, where u=0 and f=f,, to obtain
c=N/z. Therefore,

w=kT In(f/f,). (10)

In Eq. (9) it was assumed that the state variables x represent
position in real space. If they include momenta, the calcula-
tion is slightly more involved, but the relation c=N/z is also
obtained.

Now, we can write the entropy densities of the system,
reservoir, and the sum of system plus reservoir as follows:

s(x,1) = kf — kf In(zfIN), (11)
sg(x,1) = kf In(zf,/N), (12)
ST(XJ):kf_kfln(f/fe)? (13)

where additive constants were ignored. Equations (11)—(13)
are general in the sense that no specific assumption about the
evolution of f was used for their derivation. An H-theorem (a
demonstration that the system evolves irreversibly to the sta-
tionary state) follows from the total entropy S;=[dxs{(x,1)
for Fokker-Planck or master equations since it has the same
mathematical form than the Lyapunov functional used in, for
example, Ref. [6], Sec. 3.7.3. The demonstration requires the
following conditions: the drift and diffusion matrix (for a

051123-2



ENTROPY OF CONTINUOUS MARKOV PROCESSES IN...

Fokker-Planck equation) and the transition probabilities (for
a master equation) must be independent of time, the transi-
tion probabilities must be different from zero, the diffusion
matrix must be positive definite (it is positive semidefinite by
definition), and there must exist a stationary solution, f,(x),
different from zero for all x.

In several textbooks (e.g., [20]) the functional form
—f In(f/f,) is proposed for the entropy of Markov processes,
and afterwards it is shown to have the correct properties.
Here, the form of the entropy is deduced from the Boltz-
mann’s definition (as Boltzmann did for dilute gases) and,
for the combination of system and reservoir, is equal to f
—fIn(f/f,). At first glance, the difference does not seem rel-
evant, because the additional term, equal to f, has no effect
in the evaluation of total entropy changes. But it is important
for the derivation of the entropy balance equation, as will be
shown in the next section.

IV. ENTROPY BALANCE EQUATION

Let us consider that the density number is governed by a
Fokker-Planck equation

iI_ v,
Ty, (14)
with

J=A/-V B, (15)

where J is the particle current, A is the drift, and B is the
diffusion matrix. A and B can depend on x but do not de-
pend on time. By definition, matrix B is positive semidefinite
(all eigenvalues non-negative). It is convenient to use the
reversible drift [21,22] defined as

v(x) =[A(x) — eA(ex)]/2, (16)

where ¢ is a diagonal matrix with values 1 for even variables
and —1 for odd variables under time reversal. I assume that,
in equilibrium, detailed balance conditions are fulfilled:
eA(ex)f,=-A(x)f,+V-[B(x)f,] and eB(ex)e=B(x). Using
these conditions in Eq. (16), the reversible drift is v=A
—2Lf€V -(Bf,). The particle current in terms of v is

v+ Lv. 8-ty . Bf=v/-
J=\f+ 5V (Bl -5V (B =vf

JECB-V In(f/£,).
(17)

Then, the particle current can be written as J=J"+J i with

J =vf, (18)
it
J'=-7B-VIn(fif,), (19)

representing the reversible and irreversible parts, respec-
tively. The time derivative of the system entropy density is
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% =k(V-DIn(zfIN) =k V -[J In(zfIN)] = kJ - V In(zf/N)

=kV -[vf(1 = s/kf) + J In(zf/N)] = kJ' - V In(zf/N)
—kfv-V In(zf/IN) ==V - [sv - kJ' In(zf/N)]
—kJ' -V In(zfIN) +kV - (fv) —kv-Vf
=—V . [sv—kJ In(zf/IN)]-kJ'- V In(zfIN) + kf V -v.
(20)
In many cases we can eliminate the last term, kfV -v, since
the reversible part of the dynamics is usually given by a
Hamiltonian H so that v=(d,H,~dH) and V-v=0 [the state
variables are x=(r,p), where r is even and p is odd under
time reversal, and V=(4,, (91,)]. Here I will consider the more
general situation, in which V-v can be different from zero.

Finally, the time derivative of the system entropy takes the
form of a balance equation,

s r i
E=—V(JS+JS)+U’ (21)
with
Ji=vs, (22)
Ji=—kIn(zfIN)Y, (23)
o=—kJ -V In(zfIN) +kfV -v, (24)

where J/ is the reversible (or reactive) entropy current, J! is
the irreversible (or dissipative) entropy current, and o is the
entropy production term.

For the combination of system and reservoir, following
the same steps as in Eq. (20), we have

SL KV D) ==V Ly = kI In(7,)]

— kY -V In(fIf,) +kV - (fv) —kv - VF+k(f/f,)v - VF,
=—V . [s;v—kJ In(f/f,)]-kJ' - V In(f/f.,)

+k(fIf)V - (vf) ==V - [spv = kI In(f/f,)]

—kJ'-V In(fIf,). (25)

In the last step, we have used that, in equilibrium, J=J,
=vf, [see Eq. (17)] and V-J,=0. Therefore, the time deriva-

tive of the total entropy also takes the form of a balance
st

equation, - ==V (J| ;+J ’YT) + o, With
Jir=vsr, (26)
wr==kIn(fIf)J, (27)
or=—kJ -V In(f/f,). (28)

The total entropy production can also be written as

or= LIV )T BV ). @9
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FIG. 1. Entropy production versus position for a diffusion pro-
cess. The initial condition is a Gaussian function of width L. From
top to bottom, time is equal to 0, L?>/D, 2L*/D, and 4L?/D. The
units of the vertical and horizontal axis are kDN/L?® and L,
respectively

This equation shows, in agreement with the second law,
that o, =0 since B is positive semidefinite.

V. EXAMPLES

A simple example is a one-dimensional diffusion process
described by 4d,f =Dr?§f with an initial condition given by a
Gaussian function of width L, f(x,O):%exp(—szLQ).

The total entropy production term is o= le)gN x? exp[—x?/4(t
+1))/[8Vr(t+1)¥%], where the scaling x—x/L and ¢
—tD/L?* was used. Figure 1 shows o as a function of x for
different values of time.

Another example is the Kramers equation [23] for Brown-
ian motion of a particle, with mass m and momentum p,
moving in a one-dimensional potential U(x). The density

number evolution equation for N particles is

d d J P
Lo L2y Ly () 4 gpimlf+ SKT-f, (30)
p ap

ot Jxm

where { is the friction coefficient. The stationary solution is
f,=N exp[—(p*/2m+U)/kT]/z. It can be shown that the total
entropy production is

1af p )2. 31)

T

r= L fdp mkT

We can see that o is always positive and that it is equal to O
when f=f,.

VI. TRANSPORT COEFFICIENTS

To evaluate transport coefficients we will suppose that the
state variables x correspond to position in real space. In this
case, ¢ is equal to the identity matrix and v=0 [see Eq. (16)].
Now, the entropy and particle currents are JS=Jfv and J=J'.

From Egs. (10) and (19) we have the following relation
between force and current:
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__I1g.
J=-3B-V(w), (32)

where V(u/T) is interpreted as the force that drives the par-
ticle current. Therefore, the total entropy production [Eq.
(28)] is the product: o7==J-V(u/T). The matrix of transport
coefficients that relates current and force is

L
=B (33)

Onsager relations L;;=L;; are satisfied since B is symmetric
by definition, see Eq. (3.4.3) in [6]. The relation between
matrix L and diffusion matrix B was first derived in [24] in
a different context; see also [21].

Let us consider a specific case in which the energy per
particle is given by an external electric potential, e=gd,
where ¢ is the charge per particle, and the matrix diffusion is
B/2=DI, where D is the diffusion coefficient and | is the
identity matrix. It is useful to write the particle current J in
terms of the chemical potential u=wpp+e, where u;
=kT In(zf/N) [see Egs. (10) and (19)],

__ID Iz
J——kT<V,uf—TVT+qV¢). (34)

We have split the force in three parts corresponding to gra-
dients of us, T, and ¢. The corresponding currents are pro-
portional to J; the total entropy current is J 7=—(u/7)J
[Egs. (10) and (27)], and that the electric current is J,=¢J, so
we get

1 _T q
J Vg
Ml v ¥ ©
2 e A B vr .
Jor wrl T 2 Tt (35)
J. Vo
_ M 2
q s 4

It turns out that the matrix of transport coefficients that relate
currents with forces is symmetric, in accordance with the
Onsager relations. The total entropy production [Eq. (28)]
can be written in the usual way as the product of currents and
forces;

TO'T=—J‘VMf—JS’T'VT—JE‘V¢. (36)

If the Soret effect is considered, the energy per particle in-
cludes an additional term equal to ks, T2 [25], where s,, is the
Soret coefficient (in Ref. [25] experimental results show that
the local thermal equilibrium assumption is appropriate for
describing the Soret effect). Considering that there is no elec-
tric field, the particle current is

J=—DVf—fDs, VT, (37)

giving the known factor multiplying VT that represents the
thermal diffusion.
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Many explicit relations among transport coefficients can
be obtained with this procedure. Some of them are well
known, such as the relation that appears in Eq. (35), between
electric conductivity « and diffusion coefficient: «
=fDq*/ kT ([19], p. 584).

VII. MULTICOMPONENT SYSTEM

In this section, I will analyze a system composed by a
mixture of n different kinds of particles and will consider
that x represents position in real space. There are N; particles
of each type. I assume that, since the solutions are dilute, the
presence of different type of particles does not interfere in
the diffusion (represented by a different continuous Markov
process for each kind of particle) and that the different kinds
of particles interact only through reactions. There are r pos-
sible reactions with stoichiometric coefficients v,;, where in-
dex «a refers to the reaction and index j to the type of par-
ticle. The evolution of the density of particle number i of
type j, in position x;; at time £, is

r

apii(xip t)
Y = Mj[pij(xijst)] +pif(X;.1) 2_:1 Vail ol fs (38)

where Ja:‘l,dd—g;x (with V equal to the system’s volume and &,
equal to the degree of reaction), f; is the number density of
type j, and M is a linear operator that represents the Fokker-
Planck equation for particles of type j. The factor J,/f; is
interpreted as the source (or sink) term per particle of type j
due to the reaction a. J, can depend on the number densities
of the types involved in reaction «. The dependence of f; on
the density of one particle, p;;, can be neglected because it is
assumed that the number of particles N; is large. Therefore,
Eq. (38) is linear. Following the same process as in Sec. II,
we obtain

éif;;d = Mj[fj(x7t)] + z Vaj‘]ou (39)

Equation (39) is, in general, nonlinear.

The reservoir has constant chemical potentials w,; (the
characteristic of a particle reservoir is that when some par-
ticles are added to it, the chemical potentials do not change).
In equilibrium, we have w;=pu,;. Following the steps of Sec.
III, we get the entropy densities of system, reservoir, and
combination of both:

s(x,1) = kE [f; = f; In(z,f{/N))], (40)
J
sp(x,1) = kz i In(z;f,/N), (41)
J
sr(x,1) = K2 [ = f; In(filf)l, (42)

where f,;=N; exp[—(e;—u,;)/kT]/z; and z;=[dx exp[—(e;
— )/ kT, with e; being equal to the energy per particle of
type j. The chemical potentials are
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;= e+ kT In(fi/f,;). (43)

Now, we can derive the entropy balance equation as we
did for a one component system in Sec. IV. The most impor-
tant result is the entropy production term of the combination
of system and reservoir that becomes

k
or= EE f][V 1n(fj/fej)]T : Bj -V ln(fj/fi’j)
J

— k2 I(filfo) 2 Vajlu (44)
J a=1

The last term that involves the reactions can be rewritten as
21l A/ T, where A,=3,v,;u; are the affinities, and the
equilibrium condition X;v,;u,;=0 is used (see, e.g., [19],
Sec. 10.F).

The state f,; is the maximum entropy solution for given
values of N; (this constraint is included though Lagrange
multipliers). If the total number of particles did not reach
their equilibrium values, then f,; is not stationary since f,;
~N; and the total number of particles of each species can
vary due to reactions. This possible dependence of N; on
time was not considered in the derivation of Eq. (44), and
therefore, it should be applied to situations where the num-
bers N; have reached their equilibrium values, and the devia-
tions of f; respect to f,; do not modify the values of N;.

I will use the result of Eq. (44) in a general reaction
diffusion system and reproduce the result of the Prigogine
theorem. The theorem demonstrates that if a system is main-
tained in a stable stationary state that is different from, but
close to, equilibrium by an external thermodynamic force,
this state is characterized by a minimum entropy production
[26].

A reaction diffusion system is defined by

of
= DVt + F(R.f), (45)

where f=(f,,...,f,), D is a diagonal matrix with diffusion
coefficients D; for each kind of particle, and F is a set of
nonlinear real functions of f and of the control parameter R
(there can be more than one control parameter, in that case R
can be interpreted as a set of parameters). All densities must
be real and positive. Parameter R represents the external
force that drives the system out of equilibrium. The way a
reaction diffusion system can be forced in an experiment is
by fixing the values of the densities of a group of species that
are involved in the reactions. Since these densities are fixed,
they are not included in the description of Eq. (45), but their
effect on f is represented by parameter R. This external forc-
ing is not only external to the system but also to the reservoir
so that the combination of system and reservoir is not closed
and isolated. The consequence is that the total entropy of
system and reservoir can decrease.

I will assume that there is a range of values of R for which
there is a unique stationary and homogeneous solution that is
stable. These solutions form what is called the thermody-
namic branch and are the maximum entropy solutions, i.e.,
they are equal to f,. The maximum entropy solution is al-
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ways stable at equilibrium, but as the control parameter R is
modified, the external force can destabilize this solution. Let
us suppose that R takes a value in the mentioned range; the
corresponding stable homogeneous and stationary solution is
f,, and F(R,f,)=0. It is convenient to make the following
change in variables: f!=f;/f,. Now, the maximum entropy
solution is f/=1, and F’(R,1)=0. The primes will be re-
moved to simplify the notation. Let us consider the perturbed
solution f(x,7)=1+&(f)cos(q-x), where q is the wave vector
of the perturbation. The perturbation amplitudes behave as

de
— =Me, 46
7~ Me (46)
with
JF
M=-¢D+ —| . 47
q ik (47)

Since 1 is a stable solution, %h has eigenvalues with nega-
tive real part.
The entropy production for system (45) is

o (£, VE) = kZ %(Vf,-)z - kE_ In(f)F,(R.f). (48)

The first and second derivatives are

‘?&;‘fT =0 (49)

%}" =0, (50)

ﬁz—UZT =—k[ x +< x )T} (51)
o |, of |, "\ o],

(9‘?;052 =k2D. (52)

Since the real part of the eigenvalues of %h is negative,
Por . " . FPor . " .
W'l is positive definite; W'l is also positive definite
since D is a diagonal matrix of positive diffusion coeffi-
cients. Therefore, state 1 has minimum entropy production,
in accordance with the Prigogine theorem.

It is possible to prove that the global entropy production,
P=[dxo, is a Lyapunov functional of (1). To show this, let
us consider the entropy production evaluated in the perturbed
state f=1+¢ cos q-Xx,

JF
0'T=k8T<q2D sin?(q - X) — i c0s2(q~x)>s. (53)

Using this result, we can calculate the global entropy produc-
tion [since o(1)=0, it coincides with what is called the ex-
cess entropy production],
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\%
P:—kESTMs =0, (54)

where V is the volume of the system and the inequality P
=0 comes from the stability conditions of Eq. (46); P=0 for
£=0. If M is symmetric, the time derivative of P is

2
£=—kV<d—8> <0. (55)

In general, M is not symmetric. In this case, rewriting Eq.
(54) as P=—k%8T(M+MT)8 [take the transpose of Eq. (54),
sum to Eq. (54), and divide by 2], the time derivative of P is

PV
~ = kye MM+ M” + M?)e. (56)

The eigenvectors and eigenvalues of M are e; and )\j=)\;

+iNj, where | and N7 are the real and imaginary parts. The
. . _ T_ * T,

perturbations can be written as e=X,ae; and &' =X ,a;e;; re-

7%
placing in Eq. (56) we obtain !

dpP

E:—kvé‘, laI*\}* <. (57)
These results prove that P satisfies the conditions to be a
Lyapunov functional of 1.

To illustrate the calculation of the entropy, I will use the
Brusselator [27], a classical reaction diffusion system used as
a model of the Belousov-Zhabotinski reaction. The model
describes the evolution of the densities of two species, f| and
/>, that have diffusion coefficients D and D,, respectively,

J
§=Dlvz (+ A= B+ Dfy +£ifo. (58)

d

§=D2V2 2+ Bf = fifa. (59)
Parameter A is fixed, and parameter B is used as the control
parameter. Figure 2 shows the total entropy AS;=S;—S" as a
function of B in a stationary situation, where S;=[dxs(x)
and S’ =kX;N;. The sudden change in AS; shows the point
where a nonequilibrium phase transition takes place. In the
parameter region where AS; becomes negative, the system
converges to a dissipative structure composed by a steady-
state pattern. The evaluation of S; allows a classification of
nonequilibrium patterns in terms of their order or disorder.

VIII. CONCLUSIONS

Equations (11)—(13) allow the calculation of the entropy
of systems in local thermal equilibrium. This result is valid
for continuous or discontinuous Markov processes and the
total entropy S;=Jdxs; has the same form as the Lyapunov
functionals used to demonstrate the H theorem.

Equations (26)—(29) determine the entropy balance equa-
tion for a continuous Markov process that satisfies detailed
balance and that is described by a Fokker-Planck equation
with coefficients independent of time. All transport coeffi-
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FIG. 2. Total entropy change ASy, versus control parameter B,
for the Brusselator model in one dimension with periodic boundary
conditions. The thermodynamic branch, where AS;=0, is stable up
to B.=4.14. For B> B,, the system evolves to a steady-state peri-
odic structure with negative ASy. The initial condition is random
noise around the homogeneous solution xy=A and y,=B/A. Param-
eters: A=2, D;=0.0016, D,=0.006, system length L=40, time used
to reach stationary state: 1000, units of the vertical axis: k.

cients can be obtained from the entropy production term [Eq.
(29)]. They are directly related to the diffusion matrix B and
satisfy the Onsager relations.

The derivation of known relations among transport coef-
ficients is a result that supports the validity of the procedure

PHYSICAL REVIEW E 79, 051123 (2009)

to derive them and the validity of the Boltzmann entropy for
systems in local thermal equilibrium.

Multicomponent systems, with particles that can react
with probabilities that depend on the densities, were ana-
lyzed in Sec. VII. The entropy production term [Eq. (44)] of
the entropy balance equation was derived. It was used to
study entropy production in reaction diffusion systems. It
was proved that the thermodynamic branch (the set of stable
homogeneous and stationary solutions that appear as the con-
trol parameter is varied) has minimum entropy production, in
accordance to the Prigogine theorem.

The framework used for the derivation of the entropy bal-
ance equation is proposed as a tool for a deeper understand-
ing of the thermodynamic meaning of concepts used in non-
equilibrium diffusion systems. In particular, the Prigogine’s
principle of minimum entropy production is still an active
subject of interesting analysis and research; see, for example,
[16-18].
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